If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8a^2+79a-10=0
a = 8; b = 79; c = -10;
Δ = b2-4ac
Δ = 792-4·8·(-10)
Δ = 6561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6561}=81$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(79)-81}{2*8}=\frac{-160}{16} =-10 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(79)+81}{2*8}=\frac{2}{16} =1/8 $
| ∠A=8x+6 | | 6x(x-3)=12 | | -2/3(15×+3)=-3x-9 | | 0=3-4x | | 7y=-14/5*7 | | 8s-20=43+s | | 3^2x=(1/81)^4x-1 | | .2x-10=3x+4x | | ∠A=6x+5 | | 3/4x-4=1/2x+6 | | 0=-16t^2+150+20 | | 2(2x-)=10 | | 3w+12=2w-2 | | 4x=3+7 | | 2−9y=14 | | x+1/3=-5 | | (x-2)^2-8+x=x(x-6) | | 5t+9=3t-1= | | 7x-22=10x-23 | | 11x-9=3x+10 | | 8=4v-2v | | 0.8p=5.6 | | -2+13=-7x+28 | | 3(5p-)=5(p-1) | | (7x−5)^2−4=0 | | (7x−5)2−4=0 | | 10n+6=13 | | x+12/x=1.5 | | 35y^2-5y=0 | | -x+40=4(3x-3) | | 5r-7-3r=19 | | 4y-25=71 |